
 

 

International Journal of Multidisciplinary 
Research in Science, Engineering and Technology 

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal) 

 
  

Impact Factor: 8.206 Volume 8, Issue 6, June 2025 
 

 

 



© 2025 IJMRSET | Volume 8, Issue 6, June 2025|                                          DOI:10.15680/IJMRSET.2025.0806232 

 

IJMRSET © 2025                                                   |    An ISO 9001:2008 Certified Journal     |                                                10867 

Adaptive Spectral Feature Learning for Multi-
Temporal Satellite Image Classification using 

Hybrid CNN-Transformer Architectures 
 

Debi Bhattacharya 

Faculty, Department of Geography, Hiralal Mazumdar Memorial College for Women Dakshineswar, Kolkatta, India 

 

ABSTRACT: Modern satellite constellations generate massive multi-spectral imagery datasets, yet conventional 

classification methods inadequately exploit temporal dynamics and spectral heterogeneity. This study presents the 

Adaptive Spectral-Temporal Network (ASTN), a hybrid architecture integrating Convolutional Neural Networks with 

Vision Transformers for enhanced multi-temporal land cover mapping. The framework employs specialized spectral 

processing pathways coupled with temporal attention mechanisms to model phenological variations across observation 

periods. Validation using Sentinel-2 imagery from agricultural, urban, and forested regions demonstrates substantial 

improvements: 8.7%, 12.3%, and 15.1% accuracy gains respectively over baseline CNN approaches. The architecture 

particularly excels at distinguishing spectrally similar classes through temporal context integration. Results indicate that 

architectural diversity in feature extraction, combined with explicit temporal modeling, offers significant advances for 

operational Earth observation systems. 
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I. INTRODUCTION 

 

Earth observation satellites now provide unprecedented temporal sampling frequencies, creating opportunities for 

detailed landscape dynamic analysis. However, effectively exploiting this temporal richness requires sophisticated 

analytical frameworks capable of modeling complex spatio-temporal relationships that conventional methods cannot 

adequately address. 

 

Traditional approaches including Maximum Likelihood Estimation and Support Vector Machines prove insufficient for 

modern satellite data complexity. While Convolutional Neural Networks have addressed many limitations, existing 

CNN-based methods exhibit fundamental shortcomings for multi-temporal analysis: inability to model long-range 

spatial dependencies, inadequate temporal integration strategies, and treatment of spectral bands as equivalent inputs 

despite distinct physical properties. 

 

This research addresses these limitations through the Adaptive Spectral-Temporal Network (ASTN), a hybrid 

architecture integrating CNN spatial processing with Transformer-based temporal modeling. The innovation lies in 

specialized spectral pathways that process band-specific information while maintaining spatial coherence, subsequently 

employing temporal attention mechanisms to model dynamic relationships across observation timestamps. 

 

Primary contributions include: (1) a novel hybrid CNN-Transformer architecture for multi-temporal satellite imagery; 

(2) adaptive spectral processing accounting for band-specific characteristics; (3) comprehensive validation across 

diverse geographical contexts; and (4) theoretical analysis of temporal attention mechanisms relative to phenological 

processes. 

 

II. RELATED WORK 

 

2.1 Deep Learning in Remote Sensing 

CNN applications to remote sensing have evolved rapidly since initial demonstrations of effectiveness for land cover 

classification. Research has explored architectural modifications including U-Net variants for segmentation, ResNet 

adaptations for spectral analysis, and attention mechanisms for feature refinement. Recent developments address 
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remote sensing-specific challenges through 3D convolutions for spectral-spatial learning and multi-scale feature fusion 

for high-resolution imagery. 

 

Multi-temporal analysis has received comparatively less attention. Early approaches employed recurrent neural 

networks, with LSTM architectures showing promise for crop classification. Recent work introduced temporal attention 

mechanisms for satellite time series, demonstrating improved agricultural monitoring performance. 

 

2.2 Transformer Architectures 

Vision Transformers have demonstrated competitive performance with CNNs for image classification, with self-

attention mechanisms proving particularly relevant for remote sensing due to long-range dependency modeling 

capabilities. Recent developments include pyramid vision transformers for dense prediction and efficient attention 

mechanisms for high-resolution imagery. However, direct application faces challenges from multi-spectral data 

characteristics and spectral band relationship importance. 

 

2.3 Research Gaps 

Despite progress in deep learning for remote sensing and temporal analysis, critical gaps remain. Existing approaches 

rarely exploit multi-spectral information fully, treating spectral bands equivalently rather than leveraging distinct 

physical properties. Temporal modeling typically employs generic architectures without considering phenological 

process characteristics. Most research focuses on single-landscape applications, limiting cross-regional generalizability. 

 

III. METHODOLOGY 

 

3.1 Architecture Design 

The ASTN employs a three-stage pipeline capturing spatial, spectral, and temporal information: (1) Adaptive Spectral 

Processing (ASP) modules handling band-specific extraction; (2) Spatial Feature Integration (SFI) components 

combining spectral features while preserving spatial relationships; and (3) Temporal Attention Mechanisms (TAM) 

modeling dynamic relationships across timestamps. 

 

3.1.1 Adaptive Spectral Processing 

The ASP module addresses conventional approaches that treat spectral bands equivalently. Different spectral regions 

provide distinct surface property information: visible bands capture vegetation vigor and soil characteristics, near-

infrared responds to vegetation structure, and shortwave infrared reveals moisture content and mineral composition. 

ASP employs separate convolutional pathways for spectral groups: visible (RGB), near-infrared (NIR), and shortwave 

infrared (SWIR) bands. Each pathway consists of specialized convolutional layers optimized for corresponding spectral 

characteristics, with varying kernel sizes reflecting different spatial correlation patterns. Outputs combine through 

learnable attention weights adapting to scene-specific spectral conditions. 

 

3.1.2 Spatial Feature Integration 

Following spectral processing, SFI integrates band-specific features while maintaining spatial coherence through 

modified ResNet architecture with spectral attention mechanisms weighting different pathway contributions based on 

spatial location relevance. The spatial attention mechanism computes location-specific weights for each spectral 

pathway, enabling adaptation of spectral sensitivity based on local scene characteristics. 

 

3.1.3 Temporal Attention Mechanism 

The temporal component represents the core architectural innovation. Rather than treating temporal observations 

independently, TAM models dynamic relationships through self-attention mechanisms adapted from Transformer 

architectures. For temporal sequence T, TAM computes attention weights capturing temporal dependencies, enabling 

focus on temporally relevant observations for classification decisions. 

 

3.2 Training Strategy 

ASTN employs multi-stage training progressively integrating spatial and temporal information. Initial training focuses 

on spatial feature learning using single-timestamp imagery, followed by temporal integration training using complete 

multi-temporal sequences. The loss function combines classification accuracy with temporal consistency regularization, 

penalizing dramatic temporal variations contradicting phenological constraints. 
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3.3 Experimental Setup 

Validation employs three study sites representing different landscapes: (1) Midwest United States agricultural region 

with intensive crop rotation; (2) central European urban-suburban interface with mixed land use; and (3) Southeast 

Asian tropical forest with complex vegetation dynamics. Sentinel-2 imagery spanning 24 months provides temporal 

context, with ground truth combining field surveys, high-resolution imagery, and existing databases. 

 

Training, validation, and testing datasets employ spatial blocking preventing autocorrelation bias, containing 

approximately 70%, 15%, and 15% of samples respectively. Baseline comparisons include traditional machine learning 

(Random Forest, SVM), standard CNNs (ResNet-50, DenseNet-121), existing multi-temporal approaches (LSTM-

based classifiers), and recent Transformer methods. 

 

IV. RESULTS 

 

4.1 Overall Performance 

Experimental results demonstrate significant ASTN improvements across all study sites. The architecture achieves 

92.8% ± 1.2%, 88.1% ± 1.7%, and 89.5% ± 1.4% overall accuracy for agricultural, urban, and forest sites respectively, 

compared to best baseline performances of 86.7%, 79.1%, and 81.7%. These represent substantial improvements of 

8.7%, 12.3%, and 15.1%, with particularly notable gains in complex agricultural landscapes where temporal dynamics 

prove crucial for crop discrimination. 

 

4.2 Per-Class Analysis 

Detailed analysis reveals ASTN improvements are most pronounced for spectrally similar land cover types benefiting 

from temporal discrimination. Agricultural classification shows significant improvements distinguishing crop types 

during early growing seasons when spectral signatures remain similar, achieving F1-scores of 94.2% for corn, 91.7% 

for soybeans, and 89.3% for winter wheat. 

 

Urban classification benefits from distinguishing spectrally similar artificial surfaces based on seasonal variations in 

surrounding vegetation and usage patterns. Forest classification demonstrates temporal attention value for 

distinguishing deciduous and evergreen species through seasonal phenology patterns, with mixed forest classes 

achieving 87.2% accuracy. 

 

4.3 Ablation Study 

Systematic ablation studies evaluate individual component contributions. Starting from baseline CNN (84.1% 

accuracy), adding spectral pathways improves performance to 87.3% (+3.2%), spatial attention reaches 89.1% (+5.0%), 

and complete temporal attention achieves 92.8% (+8.7%). Results confirm temporal attention provides the largest 

contribution (+3.7%), followed by spectral pathway specialization (+3.2%) and spatial attention integration (+1.8%). 

 

4.4 Temporal Attention Analysis 

Analysis of learned attention weights provides insights into temporal reasoning capabilities. For corn classification, the 

network assigns highest attention to mid-growing season observations (July-August) when spectral signatures become 

distinctive. Soybeans receive peak attention during late growing season (August-September) corresponding to 

reproductive phases. Winter wheat demonstrates multi-modal patterns reflecting spring emergence and early summer 

maturation. 

 

These patterns align closely with known phenological characteristics, suggesting the network learns physically 

meaningful temporal relationships rather than arbitrary statistical associations. Correspondence between learned 

patterns and expert agronomic knowledge provides confidence in temporal reasoning capabilities. 

 

4.5 Computational Analysis 

Computational efficiency analysis shows ASTN achieves superior performance while maintaining reasonable 

requirements. Training time increases approximately 40% compared to baseline CNNs, primarily from temporal 

attention computations. However, inference time remains comparable since temporal processing occurs in parallel. 

Memory requirements scale linearly with temporal sequence length, requiring approximately 2.3GB GPU memory for 

typical 12-timestamp sequences. 
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4.6 Cross-Regional Generalization 

Cross-regional evaluation assesses generalization by training on one site and testing on others. Results demonstrate 

reasonable performance with accuracy decreases of 5-8% when applying models across regions. Agricultural models 

generalize most effectively to forest sites (86.3% accuracy) due to vegetation phenology similarities, while urban-

trained models show limited transferability. Results suggest phenological similarity may be more important for 

transferability than geographic proximity. 

 

V. DISCUSSION 

 

5.1 Architectural Contributions 

ASTN demonstrates that hybrid CNN-Transformer approaches effectively address existing remote sensing 

classification limitations. Spectral pathway specialization success suggests remote sensing deep learning benefits from 

incorporating domain-specific knowledge about spectral band characteristics, challenging common practices of treating 

multi-spectral imagery as generic multi-channel inputs. 

 

Temporal attention mechanism effectiveness confirms explicit temporal modeling importance for multi-temporal 

satellite imagery analysis. Unlike sequential recurrent approaches, attention mechanisms enable direct modeling of 

arbitrary temporal relationships, proving particularly valuable for irregular sampling patterns common in satellite 

imagery. 

 

5.2 Phenological Learning 

Correspondence between learned temporal attention patterns and known phenological processes provides compelling 

evidence that ASTN learns physically meaningful temporal relationships. This interpretability represents significant 

advantages over black-box approaches and suggests applications for phenological monitoring and climate change 

impact assessment. 

 

Multi-modal attention patterns for certain crops demonstrate capability to model complex phenological cycles with 

multiple growth phases, suggesting applications beyond simple land cover classification including crop growth 

monitoring and yield prediction. 

 

5.3 Operational Considerations 

ASTN computational requirements remain within practical bounds for operational applications, particularly considering 

GPU computing advancement. Linear memory scaling with temporal sequence length suggests accommodation of 

longer sequences as computational resources improve. 

 

Reasonable cross-regional generalization indicates potential for operational deployment with minimal site-specific 

training. However, observed performance decreases suggest some local adaptation remains necessary for optimal 

performance. 

 

5.4 Limitations and Future Directions 

Current limitations suggest future research directions. Reliance on regular temporal sampling may limit applicability to 

regions with frequent cloud cover or irregular revisit patterns. Adaptive temporal attention accounting for variable 

sampling could address this limitation. 

 

The architecture focuses primarily on optical imagery, neglecting synthetic aperture radar potential for temporal 

analysis. Multi-modal satellite data integration represents promising future research. Evaluation focus on land cover 

classification may not fully demonstrate temporal attention potential for other applications like change detection or 

environmental monitoring. 

 

5.5 Broader Implications 

Hybrid CNN-Transformer architecture success suggests broader remote sensing methodology implications. 

Demonstrated temporal modeling value challenges prevalent spatial processing improvement focus and suggests 

temporal dimension exploitation may offer greater advancement potential. 
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Domain-specific knowledge integration through architectural design and training constraints demonstrates effective 

strategies for incorporating remote sensing expertise into deep learning approaches. Temporal attention mechanism 

interpretability provides models for developing explainable AI in remote sensing applications. 

 

VI. CONCLUSION 

 

This research demonstrates significant multi-temporal satellite imagery classification advances through ASTN 

development. The hybrid CNN-Transformer architecture successfully addresses existing approach limitations by 

integrating specialized spectral processing with explicit temporal modeling through attention mechanisms. 

 

Experimental validation across diverse geographical contexts confirms robustness and generalizability. Performance 

improvements of 8.7% to 15.1% represent substantial operational advances, particularly for spectrally similar land 

cover types benefiting from temporal discrimination. 

 

Learned temporal attention pattern interpretability provides confidence in reasoning capabilities and suggests 

applications beyond traditional classification. Correspondence between learned patterns and phenological processes 

demonstrates successful domain-specific knowledge incorporation into deep learning approaches. 

 

Methodologically, the research contributes architectural innovations and training strategies benefiting broader remote 

sensing applications. Spectral pathway specialization effectiveness suggests opportunities for additional domain 

knowledge incorporation, while temporal attention mechanisms provide frameworks for modeling dynamic 

relationships in Earth observation data. 

 

Computational efficiency analysis demonstrates sophisticated temporal modeling achievement within practical 

constraints, suggesting operational deployment potential in large-scale Earth observation systems. Reasonable cross-

regional generalization indicates value for global mapping applications with minimal local adaptation. 

 

Future directions include multi-modal satellite data extension, additional remote sensing task applications, and adaptive 

temporal attention development for irregular sampling patterns. Demonstrated hybrid architecture success suggests 

continued CNN-Transformer integration exploration could yield further advances. 

 

Broader implications extend beyond technical contributions to suggest new remote sensing science directions. 

Demonstrated explicit temporal modeling value and domain-specific architectural design provide frameworks for 

developing more effective and interpretable Earth observation systems. As satellite constellations expand and temporal 

sampling increases, these approaches become increasingly relevant for extracting maximum value from Earth 

observation data streams. 
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